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ABSTRACT: Large scale metabolomics studies involving thousands of samples present multiple challenges in data analysis, partic-

ularly when an untargeted platform is used. Studies with multiple cohorts and analysis platforms exacerbate existing problems such 

as peak alignment and drift correction. Therefore there is a need for robust processing pipelines which can ensure reliable, quality 

controlled data for statistical analysis. The COMBI-BIO project is aimed at detection of metabolic markers of pre-clinical atheroscle-

rosis, and incorporates plasma from 8000 individuals, in 3 cohorts, profiled by 6 assays in 2 phases using both NMR and UPLC-MS. 

Here we present the COMBI-BIO NMR analysis pipeline and demonstrate its fitness for purpose through statistical analysis of iden-

tical representative quality control (QC) samples interleaved with study samples throughout the analytical run. Standard 1-dimen-

sional 1H-NMR spectra were aligned using the Recursive Segment-wise Peak Alignment algorithm and normalized using the Proba-

bilistic Quotient method. After removing interfering signals, outliers identified using Hotelling’s T2 were removed and a cohort/phase 

adjustment was applied, resulting in two NMR data sets for each sample. A number of quality assessment metrics were computed to 

assess the developed pipeline. Alignment of the NMR data was shown to increase the correlation-based aq0.02 quality measure from 

0.319 to 0.391 for CPMG and 0.536 to 0.586 for NOESY data, showing that the improvement was present across both large and small 

peaks. End-to-end quality assessment of the pipeline was achieved by examining the distribution of Hotelling’s T2 values across both 

pooled QC and biological samples. For CPMG spectra, the interquartile range decreased from 1.425 in raw QC data to 0.679 in 

processed spectra, while the corresponding change for NOESY spectra was 0.795 to 0.636 indicating a substantial improvement in 

precision following processing. PCA indicated that gross phase and cohort differences were no longer present in the final data sets. 

Taken together, these results illustrate that the developed pipeline produces robust and reproducible data across thousands of samples, 

successfully addressing the challenges of this large multi-faceted study. 

INTRODUCTION 

Metabolic phenotyping using 1H NMR spectroscopy is be-

coming a widely used approach in modern molecular epidemi-

ology. Owing to its high reproducibility and quantitative accu-

racy, the technique is particularly amenable to assessing the 

metabolic status of individuals from large epidemiological co-

horts1. However, as study sizes increase, the challenge of ob-

taining high quality data from thousands of blood or urine sam-

ples becomes acute. The problems are particularly serious in 

untargeted assays where the conventional approach of internal 

standards matched to each analyte of interest cannot be used. 

Further complications arise from studies combining multiple 

cohorts, leading to systematic differences in sample composi-

tion between the groups. Thus, there is a need for efficient and 

robust data processing pipelines which can address large and 

potentially heterogeneous study designs, to ensure reliable, 

quality controlled data for subsequent statistical analysis. 

Pre-processing is very important and challenging step in met-

abolic phenotyping studies, and particularly so in metabolic ep-

idemiology2.  Conventional pre-processing of 1-dimensional 

NMR data will include a Fourier Transform, apodization, base-

line correction, phasing and chemical shift calibration. In meta-

bolic phenotyping, large numbers of spectra must be made com-

parable using tools such as spectral peak alignment, intensity 

normalization and spectral binning. In addition, outlying sam-

ples and possible interfering signals need to be removed prior 

to statistical analysis. Large studies introduce further problems 

of accounting for instrument drift during long runs, batch dif-

ferences, possible merging of data from multiple instruments, 

and the comparability of data from independent cohorts. 

Validation of chemical- and data-analytic protocols is diffi-

cult in untargeted metabolomics because of the wide range and 

unknown identity of the metabolites assayed. However, re-

peated analysis throughout the run of a quality control (QC) 

sample has become a standard approach to monitor precision of 

the measurements3,4. QC samples can be prepared from a pool 



 

of the study samples or by use of a representative standard ref-

erence material. Since the QC sample is of constant composi-

tion, any variation in QC measurements can be used both to 

monitor and correct for measurement errors.  

In this paper, we present a workflow for pre-processing 1-

dimensional 1H NMR data from large multiple cohort studies. 

We focus on data from the COMBI-BIO project, in which 

~8000 individuals from three cohorts were profiled with the aim 

of discovering serum metabolic biomarkers of pre-clinical ath-

erosclerosis. To our knowledge, this is the largest multi-cohort, 

multi-platform study performed to date. Thus our suggested 

preprocessing pipeline will be of interest to researchers design-

ing similar large studies using NMR. 

MATERIALS AND METHODS 

Study population 

We used stored serum samples and associated data from ran-

domly selected individuals from three population cohorts: 

LOLIPOP5 (The London Life Sciences Prospective Popula-

tion), MESA6 (The Multi-Ethnic Study of Atherosclerosis) and 

Rotterdam7 (The Rotterdam Study). The recruitment period of 

the participants for LOLIPOP was 2002-2008; for MESA it was 

2000-2002 and for Rotterdam it was 1990-2000. The age range 

of the participants was 35-74 for LOLIPOP, 45-84 for MESA 

and 55-85 for Rotterdam. In total, 7,773 serum samples were 

analyzed in two phases over a period of approximately one year. 

Each phase corresponded to ~4,000 samples (LOLIPOP: 

~1,000, MESA: ~2,000, Rotterdam: ~1,000). Samples were 

shipped on dry ice and stored at -80 C prior to analysis. 

Preparation of samples, including quality controls (QCs)  

Two types of QC samples were used to monitor the quality 

of the NMR data. QC1 samples were derived from a commer-

cially available serum (human serum, off the clot, type AB, 

VWR catalog number BCHRS01049.2-01). QC2 samples were 

prepared by pooling equal 50 l aliquots of the phase 1 

LOLIPOP samples. All QC pools were aliquotted in 350 μl and 

stored at -80 C prior to analysis.  

Both QC and study samples were thawed on the day prior to 

analysis. 300 μl of each sample was mixed with 300 μl of phos-

phate buffer (NaHPO4, 0.075M, pH=7.4, as published previ-

ously1 in Eppendorfs for the phase 1 analysis, and in 96 well 

plates for the phase 2 analysis. After centrifugation (12,000 g at 

4 C for 5 minutes), 550 μl of each sample-buffer mixture was 

manually transferred into SampleJet 5 mm diameter NMR tubes 

and kept at 4 C until analysis.  In phase 1 one QC1 sample was 

incorporated in each 96 tube rack. In phase 2, a single QC2 sam-

ple was run in each 96 tube rack, and a single QC1 sample was 

run every two racks. In the following, we call each combination 

of phase and cohort a ‘batch’, since these groups of samples 

were analyzed in a continuous run on the instrument. 

NMR data acquisition 
1H NMR spectra were acquired using a Bruker DRX600 

spectrometer (Bruker Biospin, Rheinstetten, Germany) operat-

ing at 600 MHz. A standard water suppressed 1-dimensional 

spectrum (NOESY) and a Carr-Purcell-Meiboom-Gill (CPMG) 

spectrum were obtained for each sample. NMR spectroscopic 

analysis was completed in six batches corresponding to the 

three cohorts and two phases. 

 

 

Figure 1. Proposed pre-processing workflow for CPMG and 

NOESY NMR data. 

PRE-PROCESSING WORKFLOW 

Figure 1 presents our proposed workflow for processing 

NMR data acquired from large multi-cohort, multi-batch stud-

ies. In comparison to smaller, single batch studies, it is neces-

sary to modify the steps in the processing pipeline to address 

the key challenges of large studies. Modified steps include 

chemical shift alignment, removal of interfering spectral signals 

and outlying samples, normalization, cohort/batch correction 

and, optionally, binning. The workflow was implemented in 

MATLAB version 8.1 (Mathworks Inc., USA). 

Raw data processing and generation of one dataset from sev-

eral data tables 

All spectra were automatically phased and baseline corrected 

using Bruker instrument control software Topspin version 3.2 

(Bruker Biospin, Rheinstetten, Germany). Since internal stand-

ards such as TSP exhibit significant protein binding which af-

fects the peak shape and position, chemical shifts were cali-

brated to the glucose doublet at δ 5.23. The chemical shift range 

of the spectra was clipped to δ 0.50 ̶ δ 9.00 since no bona fide 

metabolite signals are observed in serum outside this region. Fi-

nally, the six data sets were concatenated to produce one large 

data table consisting of 34,001 variables and 7,872 samples in 

the CPMG dataset and 7,869 samples in the NOESY dataset in-

cluding the QCs.  

Spectral peak alignment 

Prior to spectral peak alignment, the region δ 4.40‒5.10 cor-

responding to residual water signals was removed. The table 

was split into six consecutive chemical shift slices for alignment 

to ameliorate high computer memory demands. The cut points 

(δ 1.45, 2.64, 3.33 and 6.00) were selected to be in regions con-

taining no sharp resonances. Alignment was performed using 

RSPA (Recursive Segment-wise Peak Alignment8). This algo-

rithm is appropriate for large data sets as it is fast and has been 



 

shown to improve alignment of small peaks. After alignment 

the slices were concatenated to form a single data table. 

Removal of interfering regions 

In addition to the spectral region related to the water suppres-

sion residual, there may be other regions which contain inter-

ferents which can cause errors in further analysis. A common 

contaminant in clinical and epidemiological studies is metha-

nol. This was also observed in our study requiring removal of 

the region δ 3.375‒3.400. Suspected interferents in the regions 

δ 1.180‒1.240, δ 2.244‒2.261, and δ 3.660‒3.710 were also re-

moved. Selection of the interfering spectral regions may not be 

straightforward and may require expert-driven suggestions. Af-

ter removing interfering signals, the datasets contained 30,590 

data points. 

Normalization 

Normalization is the process of applying a spectrum-wide 

scale factor to each spectrum to correct for global variations in 

the NMR signal. These could be due to, for example, variable 

dilutions or small changes in instrument calibration over the 

course of a large run. In this study, we used probabilistic quo-

tient normalization (PQN9) in which the median intensity ratio 

between each sample spectrum and a reference is normalized to 

unity. PQN has been shown to outperform earlier methods such 

as total intensity normalization and is fast and memory efficient. 

We used the median spectrum of the full data as the reference. 

Note that normalization using a reference must be performed 

after alignment, since intensity ratios prior to alignment may be 

influenced by uncontrolled peak shifts. 

Removal of outlying samples 

Before applying statistical analysis, removal of outliers is es-

sential. Strong outliers due, for example, to instrument malfunc-

tion during measurement can be detected by investigating Ho-

telling T2 values of the samples, calculated using the scores of 

a principal component analysis (PCA). The spectra of suspected 

samples are then examined as to whether they are analytical out-

liers and, if so, discarded from the sample set. In the present 

study, we constructed separate PCA models for both CPMG and 

NOESY datasets. We excluded 3 outliers from CPMG dataset 

and 4 outliers from NOESY dataset where the outliers demon-

strated extreme Hotelling T2 values (>10T2
crit at 95% confi-

dence level). Excluded samples were attributable to spectra 

with poor water suppression and baseline distortion.  

Spectral binning 

Statistical analysis can be applied to high-resolution spectra 

so that all the information in the dataset is used. However, in 

order to decrease the number of variables and alleviate minor 

residual misalignments and peak shape differences, spectral 

binning can be applied. Since each approach has advantages, we 

decided to apply both, to produce both a high-resolution and 

binned version of each data set, and to apply biomarker mining 

approaches to each. We binned the data using statistical re-

coupling of variables (SRV10) which generates bins by search-

ing for adjacent correlated structures in the high-resolution 

spectrum. The minimum number of variables to generate a bin 

depends on the resolution of the spectra. In this study, we chose 

to use a minimum of 10 variables (2.5x10-3 ppm or 1.5 Hz) per 

bin. The automatic bin positions were reviewed by an expert 

NMR spectroscopist to ensure that the binning produced no ar-

tifacts such as split peaks, resulting in minor adjustments being 

made to around 2% of the bins. Figure 2 shows an example of 

the binning process on the mean CPMG spectrum. After bin-

ning, the number of variables for CPMG and NOESY NMR da-

tasets decreased to 468 and 447, respectively. 

 

Figure 2. Representative example of SRV spectral binning on a re-

gion of the mean CPMG spectrum. Each bin starts at a solid line 

and ends at the position of a closest dashed line on the left. 

Phase and cohort adjustment 

In large-scale studies with samples with different origins, 

variation can be observed with respect to the origin. In the pre-

sent case we have three cohorts and two phases of data acquisi-

tion. The variation due to cohorts may occur due to different 

sample composition, but also collection and storage conditions, 

whereas the phase variation is related to different time periods 

of NMR analysis. Given that the biomarker discovery is aimed 

at finding cohort-independent signatures of disease, it was 

deemed appropriate to remove all cohort and phase differences 

in mean levels prior to statistical analysis with a mean-centering 

operation11. We therefore mean-centered each of the six 

phase/cohort batches separately and subsequently concatenated 

the data back into a single table.  

RESULTS AND DISCUSSION 

The pre-processing workflow was applied to each of the 

CPMG and NOESY NMR datasets at hand. The final datasets 

consisted of 7,869 samples for CPMG and 7,865 samples for 

NOESY. High resolution versions of the NMR datasets both 

contained 30,590 variables, whereas binned versions of CPMG 

and NOESY contained 468 and 447 variables respectively. In 

the following we illustrate the workflow using the CPMG high-

resolution data. Results for NOESY and binned data are similar 

and can be found in Supporting Information. 

Assessment of spectral peak alignment 

Figure 3 shows the results of spectral peak alignment on the 

CPMG data. Peak alignment quality was initially assessed vis-

ually using the visualization seen in the figure. A clear improve-

ment can be observed in the heat maps, for example the doublet 

at ~1.5 ppm. Panels (c) and (d) show how much variation in 

position across the data set is present at each chemical shift. 

This clearly shows more stability (sharper peaks in the distribu-

tion) after the alignment procedure.  

  



 

 

Figure 3. Illustration of spectral peaks on a representative region of CPMG NMR dataset before (a) and after (b) alignment. Panels (c) and 

(d) show the peak position distribution in each region. Larger peak position distribution values indicate that the peaks are better aligned. 

 

To evaluate the quality of the alignment more objectively, we 

follow Veselkov et al.8 and calculate quality measures based on 

correlation between appropriately scaled pairs of aligned spec-

tra. The ith spectrum is first divided into a grid of K adjacent 

regions each of width w. To account for large variations in peak 

intensities, the raw intensities 𝒔𝑖𝑘
𝐫𝐚𝐰 of the kth region in the ith 

spectrum are centered and scaled to unit variance: 

 𝒔𝑖𝑘 =
𝒔𝑖𝑘
𝐫𝐚𝐰 − 𝜇𝑖𝑘

𝐫𝐚𝐰

𝜎𝑖𝑘
𝐫𝐚𝐰  (1) 

where 𝜇𝑖𝑘
𝐫𝐚𝐰 and 𝜎𝑖𝑘

𝐫𝐚𝐰 denote the mean and standard deviation 

of raw intensities in spectrum i and region k. The scaled inten-

sities are reassembled 𝑺𝑖 = (𝒔𝑖1, 𝒔𝑖2, … , 𝒔𝑖𝐾) and the quality 

metric 𝑎𝑞𝑤 is defined as 

 𝑎𝑞𝑤 =
2

𝑛(𝑛 − 1)
∑∑𝑐𝑐(𝑺𝑖 , 𝑺𝑗)

𝑖−1

𝑗=1

𝑛

𝑖=1

 (2) 

where 𝑐𝑐  is the Pearson correlation coefficient and n is the 

number of spectra.  

We assessed alignment quality through calculation of the 

alignment quality metric 𝑎𝑞𝑤 (Error! Reference source not 

found.). We chose bin sizes of w = 0.08 ppm to focus on large 

peaks only and w = 0.02 ppm to up-weight the contribution 

from small peaks. The aq values for the aligned data were found 

to be significantly higher than those for the unaligned data for 

both bin sizes (one-sided, paired t-test, p=0 indicating a suc-

cessful peak alignment across the QC and biological sample 

spectra. 

Assessment of the pre-processing workflow via the quality 

control samples (QCs) 

An assessment of the overall workflow was achieved by 

monitoring the QC samples. Since each QC type (QC1 & QC2) 

is of constant composition, the dispersion in the QC measure-

ments reveals the level non-biological variation, derived from 

the analytical and data analysis pipeline, which may also be pre-

sent in the biological samples. 

 

Table 1. Alignment quality (𝒂𝒒𝒘) measures for the datasets 

with different bin sizes in ppm. 

  CPMG NOESY 

sample 

type 
 

una-

ligned 
aligned 

una-

ligned 
aligned 

QC1 𝑎𝑞0.02 0.349 0.415 0.582 0.636 

 𝑎𝑞0.08 0.468 0.532 0.806 0.846 

QC2 𝑎𝑞0.02 0.407 0.456 0.654 0.677 

 𝑎𝑞0.08 0.524 0.570 0.872 0.887 

BIO 𝑎𝑞0.02 0.319 0.391 0.536 0.586 

 𝑎𝑞0.08 0.439 0.511 0.764 0.801 

 

A qualitative impression of the QC measurements can be 

gained from observing the position of the QCs on a PCA scores 

plot, along with the biological samples. Figure 4 shows such a 

plot for the first two components of a PCA model of the mean-

centered datasets. The QCs form two clusters according to the 

QC type and seem to become less scattered if unaligned and 

normalized versions are compared. To quantify the improve-

ment in QC clustering seen in the figure, we calculated the ratio 

r of the sum of variances of the first two scores of each QC type 

to the sum of variances of the first two scores of the biological 

samples. 

 𝑟 =
𝑣𝑎𝑟(𝐭1

𝑄𝐶
) + 𝑣𝑎𝑟(𝐭2

𝑄𝐶
)

𝑣𝑎𝑟(𝐭1
𝐵𝐼𝑂) + 𝑣𝑎𝑟(𝐭2

𝐵𝐼𝑂)
 (3) 

where 𝑣𝑎𝑟(𝐭𝑖
𝑄𝐶
) and 𝑣𝑎𝑟(𝐭𝑖

𝐵𝐼𝑂) are the variances of the i’th 

score vectors for QCs and biological samples respectively. It 

was found that this ratio decreased from r=3.59% in the una-

ligned data to 1.64% after normalization for QC1. For QC2 the 

value decreased from 1.77% to 0.81%. 

A further quality assessment can be made by analyzing the 

distribution of Hotelling T2 values for the QC samples1. The 

Hotelling T2 value is proportional to the squared Mahalanobis 

distance of a sample from the origin in the score space12 and 



 

thus takes into account all components in the PCA model. Fig-

ure 5 shows box plots of the Hotelling T2 values for QC1, QC2 

and biological samples, computed from PCA models explaining 

at least 95% of the variance in the data (six PCs). For the CPMG 

dataset, the QC1 interquartile range decreased from 1.425 in the 

raw data to 0.679 after alignment, normalization and outlier re-

moval. The range for QC2 decreased similarly, from 0.471 to 

0.355 after the pre-processing steps. For the NOESY dataset, 

the range for QC1 decreased from 0.795 to 0.636; the range for 

QC2 decreased from 0.763 to 0.426. Note that no information 

from the QCs used in pre-processing the data, so this decrease 

can be interpreted as a genuine effect of the processing pipeline. 

Therefore, it can be concluded that the pre-processing pipeline 

improved the quality of the data, as measured by the quality 

control samples.  

On the PCA score plot of the pre-processed data in Figure 4c, 

the samples of the MESA and LOLIPOP cohorts appear to over-

lap whereas the samples of the Rotterdam cohort do not. Whilst 

there are real biological differences between the cohorts (e.g. 

age, diet, lifestyle), this variation might also have occurred due 

to sample collection and storage protocols. Although these bio-

logical and methodological effects are confounded, the impact 

is minor, since subsequent biomarker mining is aimed at finding 

consistent relationships between metabolic phenotype and clin-

ical outcomes within, not between cohorts. In addition, within 

each cohort, the two phases introduce potential batch effects 

which should be taken into consideration. Therefore, we ad-

justed the data (biological samples only) for both phase and co-

hort as in step 7 in the workflow. After adjustment the batch 

differences are no longer apparent (Figure 4d). 

At the end of the assessment of the pre-processing workflow, 

the final versions of the high resolution and binned spectra 

(CPMG and NOESY) were deemed suitable for further statisti-

cal analysis. 

 

Figure 4. PCA score plots generated using a) unaligned and b) aligned CPMG data without the interfering regions. c) Score plot of the CPMG 

data after normalization and the removal of major outliers. d) Score plot of the CPMG data after adjustment for cohort and phase. Colors 

correspond to cohorts (red: LOLIPOP, blue: MESA, green: ROTTERDAM). Symbols for the biological samples vary according to phases 

(: phase 1, : phase 2). Zoomed frames show the QC samples (: QC1 analyzed in phase 1, : QC1 analyzed in phase 2, : QC2 

analyzed in phase 2). Axis labels indicate the percentage variance explained by each principal component (PC). 

 



 

 

Figure 5. Box plots of Hotelling T2 values for the CPMG dataset 

(QC1, QC2 and biological samples, BIO) corresponding to a) una-

ligned data b) aligned and normalized data with major outliers re-

moved. 

 

CONCLUSION 

Obtaining high quality analytical data in large metabolic epi-

demiology studies is fraught with difficulties. We have pre-

sented a general workflow for pre-processing such large NMR 

data sets. To our knowledge this is the first workflow address-

ing the issue of multi-cohort large-scale studies in untargeted 

NMR metabolomics. Careful end-to-end analysis using multi-

ple repeatedly analyzed QC samples enabled us to monitor and 

control the quality of the resultant data sets. Overall, the ap-

proach was able to improve the precision of the data, in several 

different measures of quality, as compared to that entering the 

pipeline. The strategy presented here will be of relevance to sci-

entists designing large studies where large numbers of samples 

are to be assayed by an untargeted NMR platform. 
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